Propositional Logic Solutions

Shashwat Bansal

November 18, 2023

1. Given n propositional statements, how many possible combinations of their states exist? In the case we have exactly two propositions P and $Q(n=2)$, what are the possible combinations?
Solution: $2^{n} ; P \wedge Q, P \wedge \neg Q, \neg P \wedge Q, \neg P \wedge \neg Q$.
2. Convert the following sentences to expressions in propositional logic. You should need at most three propositions per statement. Please specify what the propositions are.
(a) It rains.

Solution: $P:=$ It rains; P.
(b) It rains or it doesn't rain.

Solution: $P:=$ It rains; $P \vee \neg P$.
(c) If martians exist, they have red hair.

Solution: $P:=$ Martians exist, $Q:=$ Martians have red hair; $P \Longrightarrow$ Q.
(d) He has an Ace only if he does not have a Knight or a Spade

Solution: $P:=$ He has a knight, $Q:=$ He has a Spade, $R:=$ He has an Ace; $\neg(P \vee Q) \Longrightarrow R$.
(e) New allocation not being worse than initial endowment is a necessary and sufficient condition for Pareto efficiency.
Solution: $P:=$ New allocation is worse that initial endowment, $Q:=$ Pareto efficiency exists; $\neg P \Leftrightarrow Q$.
(f) If independence implies uncorrelatedness, correlatedness implies dependence.
Solution: $P:=$ Independence, $Q:=$ Uncorrelatedness; $(P \Rightarrow Q) \Rightarrow$
$(\neg Q \Rightarrow \neg P)$. Alternatively, $P:=$ Dependence, $Q:=$ Correlatedness;
$(\neg P \Rightarrow \neg Q) \Rightarrow(Q \Rightarrow P)$.
3. Which of the following are valid deductions?
(a) Assertion: If I leave my umbrella at home, I will get wet today.

Hypothesis 1: I got wet, so I must have left my umbrella at home.
Hypothesis 2: I didn't leave my umbrella at home, so I will not get wet today.
Hypothesis 3: I did not get wet today, so I must not have left my umbrella at home.
Solution: In propositional form, $P:=\mathrm{I}$ leave my umbrella at home, $Q:=$ I get wet. Assertion: $P \Rightarrow Q$, Hypothesis 1: $Q \Rightarrow P$, Hypothesis 2: $\neg P \Rightarrow \neg Q$, Hypothesis 3: $\neg Q \Rightarrow \neg P$. Hypothesis 3 is the only logical deduction.
(b) Assertion: If two random variables X and Y are independent, their correlation is zero.
Hypothesis 1: X and Y have zero correlation, so they are independent. Hypothesis 2: X and Y don't have zero correlation, so they must not be dependent.
Hypothesis 3: X and Y are dependent, so their correlation is not zero.
Solution: This is nearly identical to part (a). $P:=X$ and Y are independent, $Q:=X$ and Y have zero correlation. Assertion: $P \Rightarrow$ Q, Hypothesis 1: $Q \Rightarrow P$, Hypothesis 2: $\neg Q \Rightarrow \neg P$, Hypothesis 3: $\neg P \Rightarrow \neg Q$. Hypothesis 2 is the only logical deduction.
4. Simplify the following Boolean expression such that it only has three boolean operators:

$$
\neg(A \vee \neg C) \vee((\neg A \wedge B) \vee B)
$$

Solution:
$\neg(A \vee \neg C) \vee((\neg A \wedge B) \vee B)$
Using De Morgan's Law: $\Leftrightarrow(A \wedge \neg \neg C) \vee((\neg A \wedge B) \vee B)$
Double negations cancel: $\Leftrightarrow(A \wedge C) \vee((\neg A \wedge B) \vee B)$
Identity law: $\Leftrightarrow(A \wedge C) \vee((\neg A \wedge B) \vee(B \wedge 1))$
Distributive law: $\Leftrightarrow(A \wedge C) \vee(B \wedge(\neg A \vee 1))$
Annulment Law: $\Leftrightarrow(A \wedge C) \vee(B \wedge 1)$
Identity law: $\Leftrightarrow(A \wedge C) \vee B$

Constructing a truth table verifies our solution.

5. Show that $P \Longrightarrow Q$ is an equivalent statement to $\neg P \vee Q$ by filling in the following truth table:

Solution:

P	Q	$\neg P$	$\neg P \vee Q$	$P \Longrightarrow Q$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

6. Fill in the following truth table. Which binary operation have you derived in the last column? (From $\vee, \wedge, \Longrightarrow, \Longleftrightarrow$)

Solution:

P	Q	$\neg P$	$\neg P \vee Q$	$\neg Q$	$\neg Q \vee P$	$(\neg P \vee Q) \wedge(\neg Q \vee P)$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

7. What is the boolean expression equivalent to "MUX Out" below? Draw the circuit that corresponds with this expression. The circuit is known as a multiplexer.

P	Q	S	MUX Out
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Solution: If we can figure out when the output is non-zero, we know the expression. So we consider all the rows with a 1 as their out, and "sum"
them:

$$
(P \wedge Q \wedge S) \vee(P \wedge Q \neg S) \vee(P \wedge \neg Q \wedge S) \vee(\neg P \wedge Q \wedge \neg S)
$$

Rearranging via commutativity of disjunction:

$$
\Leftrightarrow(P \wedge Q \wedge S) \vee(P \wedge \neg Q \wedge S) \vee(P \wedge Q \wedge \neg S) \vee(\neg P \wedge Q \wedge \neg S)
$$

Distributivity: $\Leftrightarrow(((P \wedge Q) \vee(P \wedge \neg Q)) \wedge S) \vee(((P \wedge Q)) \vee(\neg P \wedge Q) \neg S)$
Distributivity: $\Leftrightarrow(P \wedge(Q \vee \neg Q) \wedge S) \vee(Q \wedge(P \vee \neg P) \wedge \neg S)$
Complement: $\Leftrightarrow(P \wedge S) \vee(Q \wedge \neg S)$

8. Prove that $(P \Rightarrow Q) \Rightarrow((Q \Rightarrow \perp) \Rightarrow(P \Rightarrow \perp))$. The consequent is known as the contrapositive.
Solution: Note that in natural deduction style proofs, statements above horizontal lines are assumptions. So lines 1,2 and 3 are assumptions, while lines 4 and 5 are deductions from the assumptions (Modus Ponens):

